
Radiative transfer for cloud-scale models: 
accuracy and efficiency

Robert Pincus and Bjorn Stevens



Terminology

By “cloud-scale model” I mean models that resolve the circulations 
in individual clouds

Roughly:

“large-eddy simulations” grid scale O(10 m)

“cloud-resolving models” grid scale O(1 km) 

Circulations are driven by internal heating/cooling and 
surface fluxes



Radiation for cloud scale models: a perfect world

The “proper” radiation calculation is broadband 3D radiative 
transfer at each time step, but 
a) this is horribly expensive, and 
b) heating rate differences from 1D are small

Next easiest is independent broadband 1D calculations in each 
column (“ICA”) at each time step 

But even this isn’t practical: our naïve implementation increased 
solution time by a factor of 50
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Radiation for cloud-scale models: the real world

But radiation is often a small forcing at the cloud scale 
(not always, though - think stratocumulus!) 

So in cloud-scale models, radiation may be 

ignored

idealized

parameterized simply (i.e. analytic fits)

or, for the most flexibility (think MMF)

computed every N times steps

(GCMs do this too)



Why infrequent radiation calculations are a bad idea

The choice of N is arbitrary: no objective convergence tests

No way to know when N is too big 
(and some systems are known to be unstable)

Sampling errors are correlated with the flow 
(increase with local velocity scale) 



So we tried another approach (stop me if you’ve heard this)

Why are heating rate calculations so expensive? It’s the broadband 
integration - the double sum over bands and g-points

So we turned the roadblock into a springboard: 
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Why are heating rate calculations so expensive? It’s the broadband 
integration - the double sum over bands and g-points

So we turned the roadblock into a springboard: 

Formally, this is a Monte Carlo sample of the full calculation, so
we’re calling this “Monte Carlo spectral integration”  

A single estimate is noisy but many estimates 
converge to the right answer. 

F (x, y, t) ≈ FMC(x, y, t) = w(b′)Fb′,g′(x, y, t)

where
p(b′) = 1/B and p(g′) = 1/wg′(b′)



We built this. It works like a champ
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A scaling analysis for large-eddy simulation (i)

We’ll compare the energy we expect in an eddy of a given size 
with the energy introduced by the Monte Carlo noise

Consider a well-mixed boundary layer with simple physics:

Radiative cooling at cloud top causes a buoyancy flux Bh 

which drives eddies about as big as the boundary layer depth. 

These drive smaller eddies according to the Komolgorov 
cascade

Bh ∝ ∆F

eh ∝ (Bhh)2/3
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A scaling analysis for large-eddy simulation (ii)

These perturbations systematically affect the flow if 
1) they persist for an eddy turnover time, and 
2) the perturbation changes the eddy energy significantly

Now imagine some approximation to the driving fluxes

Bl = Bl + B′
l
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Now imagine some approximation to the driving fluxes

Bl = Bl + B′
l

nl is determined by the scale l of the eddy, through the spatial scale 
and the CFL criteria
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Monte Carlo estimates of flux produce perturbations that scale as



A scaling analysis for large-eddy simulation (iii)

For resolved eddies nl >> 1

So the ratio of the specific energy to the expected value is small: 
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In (other) words

The technique introduces lots of noise, but that noise is 

largest at the smallest time/space scales 
(where it diffuses away quickly)

and
small relative to the energy from other source at resolved scales



Two implications

The practical: 
We have a way to compute interactive radiation in cloud-scale 
models 

The theoretical: 
We have a way to understand how approximations for radiative 
transfer (think 3D vs 1D radiative transfer) affect simulations by 
cloud-scale models 

I’ll bet anyone a dollar we can get away with 1D radiative transfer 
in the shortwave 


